3,013 research outputs found

    Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle

    Full text link
    The geometric phase has been proposed as a candidate for noise resilient coherent manipulation of fragile quantum systems. Since it is determined only by the path of the quantum state, the presence of noise fluctuations affects the geometric phase in a different way than the dynamical phase. We have experimentally tested the robustness of Berry's geometric phase for spin-1/2 particles in a cyclically varying magnetic field. Using trapped polarized ultra-cold neutrons it is demonstrated that the geometric phase contributions to dephasing due to adiabatic field fluctuations vanish for long evolution times.Comment: 4 pages, 4 figure

    A small source in Q2237+0305 ?

    Get PDF
    Microlensing in Q2237+0305 between 1985 and 1995 (eg. Irwin et al. 1989; Corrigan et al. 1991; Ostensen et al. 1996) has been interpreted in two different ways; as microlensing by stellar mass objects of a continuum source having dimensions significantly smaller than the microlens Einstein radius (ER) (eg. Wambsganss, Paczynski & Schneider 1990; Rauch & Blandford 1991), and as microlensing by very low mass objects of a source as large as 5 ER (Refsdal & Stabell 1993; Haugan 1996). In this paper we present evidence in favour of a small source. Limits on the source size (in units of ER) are obtained from the combination of limits on the number of microlens Einstein radii crossed by the source during the monitoring period with two separate light-curve features. Firstly, recently published monitoring data (Wozniak et al. 2000; OGLE web page) show large variations (~0.8-1.5 magnitudes) between image brightnesses over a period of 700 days or ~15% of the monitoring period. Secondly, the 1988 peak in the image A light-curve had a duration that is a small fraction (<0.02) of the monitoring period. Such rapid microlensing rises and short microlensing peaks only occur for small sources. We find that the observed large-rapid variation limits the source size to be <0.2 ER (95% confidence). The width of the light-curve peak provides a stronger constraint of <0.02 ER (99% confidence). The Einstein radius (projected into the source plane) of the average microlens mass (m) in Q2237+0305 is ER ~ 10^{17}\sqrt{m} cm. The interpretation that stars are responsible for microlensing in Q2237+0305 therefore results in limits on the continuum source size that are consistent with current accretion disc theory.Comment: 8 pages, 3 figures, accepted for publication in M.N.R.A.

    Constraints on the mass-profile of the lens galaxy G2237+0305

    Full text link
    Published parametric models of the Einstein Cross gravitational lens demonstrate that the image geometry can be reproduced by families of models. In particular, the slope of the mass-profile for the lens galaxy is unconstrained. However, recent models predict a dependence of image flux ratios on the slope of the mass profile. We use this dependence to constrain the mass profile by calculating the likelihood of the slope using published mid-IR flux ratios (including microlensing variability). We find that the galaxy is likely to be flatter than isothermal, and therefore that the mass-to-light ratio is decreasing in the inner kpc.Comment: 9 pages 7 figures. To be published in MNRA

    An HST Study of the Supernovae Accompanying GRB 040924 and GRB 041006

    Full text link
    We present the results from a {\it Hubble Space Telescope/ACS} study of the supernovae associated with gamma-ray bursts 040924 (z=0.86z=0.86) and 041006 (z=0.71z=0.71). We find evidence that both GRBs were associated with a SN 1998bw-like supernova dimmed by 1.5\sim 1.5 and 0.3\sim 0.3 magnitudes, respectively, making GRB 040924 the faintest GRB-associated SN ever detected. We study the luminosity dispersion in GRB/XRF-associated SNe and compare to local Type Ibc supernovae from the literature. We find significant overlap between the two samples, suggesting that GRB/XRF-associated SNe are not necessarily more luminous nor produce more 56^{56}Ni than local SNe. Based on the current (limited) datasets, we find that the two samples may share a similar 56^{56}Ni production mechanism.Comment: ApJ accepted (in press). Revised version. High-resolution figures available at http://www.astro.caltech.edu/~ams/GRB-SNe.htm

    Proteome Profiling of Breast Tumors by Gel Electrophoresis and Nanoscale Electrospray Ionization Mass Spectrometry

    Get PDF
    We have conducted proteome-wide analysis of fresh surgery specimens derived from breast cancer patients, using an approach that integrates size-based intact protein fractionation, nanoscale liquid separation of peptides, electrospray ion trap mass spectrometry, and bioinformatics. Through this approach, we have acquired a large amount of peptide fragmentation spectra from size-resolved fractions of the proteomes of several breast tumors, tissue peripheral to the tumor, and samples from patients undergoing noncancer surgery. Label-free quantitation was used to generate protein abundance maps for each proteome and perform comparative analyses. The mass spectrometry data revealed distinct qualitative and quantitative patterns distinguishing the tumors from healthy tissue as well as differences between metastatic and non-metastatic human breast cancers including many established and potential novel candidate protein biomarkers. Selected proteins were evaluated by Western blotting using tumors grouped according to histological grade, size, and receptor expression but differing in nodal status. Immunohistochemical analysis of a wide panel of breast tumors was conducted to assess expression in different types of breast cancers and the cellular distribution of the candidate proteins. These experiments provided further insights and an independent validation of the data obtained by mass spectrometry and revealed the potential of this approach for establishing multimodal markers for early metastasis, therapy outcomes, prognosis, and diagnosis in the future. © 2008 American Chemical Society

    The afterglow of GRB050709 and the nature of the short-hard gamma-ray bursts

    Full text link
    The final chapter in the long-standing mystery of the gamma-ray bursts (GRBs) centres on the origin of the short-hard class, suspected on theoretical grounds to result from the coalescence of neutron star or black hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical, and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst whose accurate position allows us to unambiguously associate it with a star-forming galaxy at redshift z=0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.Comment: Nature in press (Oct 6 issue). 23 pages, 4 figure

    Disease overarching mechanisms that explain and predict outcome of patients with high cardiovascular risk: rationale and design of the Berlin Long-term Observation of vascular events (BeLOVE) study

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) is the leading cause of premature death worldwide. Effective and individualized treatment requires exact knowledge about both risk factors and risk estimation. Most evidence for risk prediction currently comes from population-based studies on first incident cardiovascular events. In contrast, little is known about the relevance of risk factors for the outcome of patients with established CVD or those who are at high risk of CVD, including patients with type 2 diabetes. In addition, most studies focus on individual diseases, whereas less is known about disease overarching risk factors and cross-over risk. AIM: The aim of BeLOVE is to improve short- and long-term prediction and mechanistic understanding of cardiovascular disease progression and outcomes in very high-risk patients, both in the acute as well as in the chronic phase, in order to provide the basis for improved, individualized management. STUDY DESIGN: BeLOVE is an observational prospective cohort study of patients of both sexes aged >18 in selected Berlin hospitals, who have a high risk of future cardiovascular events, including patients with a history of acute coronary syndrome (ACS), acute stroke (AS), acute heart failure (AHF), acute kidney injury (AKI) or type 2 diabetes with manifest target-organ damage. BeLOVE includes 2 subcohorts: The acute subcohort includes 6500 patients with ACS, AS, AHF, or AKI within 2-8 days after their qualifying event, who undergo a structured interview about medical history as well as blood sample collection. The chronic subcohort includes 6000 patients with ACS, AS, AHF, or AKI 90 days after event, and patients with type 2 diabetes (T2DM) and target-organ damage. These patients undergo a 6-8 hour deep phenotyping program, including detailed clinical phenotyping from a cardiological, neurological and metabolic perspective, questionnaires including patient-reported outcome measures (PROMs)as well as magnetic resonance imaging. Several biological samples are collected (i.e. blood, urine, saliva, stool) with blood samples collected in a fasting state, as well as after a metabolic challenge (either nutritional or cardiopulmonary exercise stress test). Ascertainment of major adverse cardiovascular events (MACE) will be performed in all patients using a combination of active and passive follow up procedures, such as on-site visits (if applicable), telephone interviews, review of medical charts, and links to local health authorities. Additional phenotyping visits are planned at 2, 5 and 10 years after inclusion into the chronic subcohort. FUTURE PERSPECTIVE: BeLOVE provides a unique opportunity to study both the short- and long-term disease course of patients at high cardiovascular risk through innovative and extensive deep phenotyping. Moreover, the unique study design provides opportunities for acute and post-acute inclusion and allows us to derive two non-nested yet overlapping sub-cohorts, tailored for upcoming research questions. Thereby, we aim to study disease overarching research questions, to understand crossover risk, and to find similarities and differences between clinical phenotypes of patients at high cardiovascular risk

    Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure

    Get PDF
    The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5

    Vanishing spin alignment : experimental indication of triaxial 28Si+28Si\bf ^{28}Si + {^{28}Si} nuclear molecule

    Full text link
    Fragment-fragment-γ\gamma coincidences have been measured for 28Si+28Si\rm ^{28}Si + {^{28}Si} at an energy corresponding to the population of a conjectured resonance in 56^{56}Ni. Fragment angular distributions as well as γ\gamma-ray angular correlations indicate that the spin orientations of the outgoing fragments are perpendicular to the orbital angular momentum. This differs from the 24Mg+24Mg\rm ^{24}Mg+{^{24}Mg} and the 12C+12C\rm ^{12}C+{^{12}C} resonances, and suggests two oblate 28Si\rm ^{28}Si nuclei interacting in an equator-to-equator molecular configuration.Comment: 14 pages standard REVTeX file, 3 ps Figures -- Accepted for publication in Physical Review C (Rapid Communication

    Serum creatinine and cystatin C‐based estimates of glomerular filtration rate are misleading in acute heart failure

    Get PDF
    Aims: We aimed to test whether the endogenous filtration markers serum creatinine or cystatin C and equation-based estimates of glomerular filtration rate (GFR) based on these markers appropriately reflect changes of measured GFR in patients with acute heart failure. Methods: In this prospective cohort study of 50 hospitalized acute heart failure patients undergoing decongestive therapy, we applied an intravenous visible fluorescent injectate (VFI), consisting of a low molecular weight component to measure GFR and a high molecular weight component to correct for measured plasma volume. Thirty-eight patients had two sequential GFR measurements 48 h apart. The co-primary endpoints of the study were safety of VFI and plasma stability of the high molecular weight component. A key secondary endpoint was to compare changes in measured GFR (mGFR) to changes of serum creatinine, cystatin C and estimated GFR. Results: VFI-based GFR measurements were safe and consistent with plasma stability of the high molecular weight component and glomerular filtration of the low molecular weight component. Filtration marker-based point estimates of GFR, when compared with mGFR, provided only moderate correlation (Pearson's r, range 0.80-0.88, depending on equation used), precision (r(2), range 0.65-0.78) and accuracy (56%-74% of estimates scored within 30% of mGFR). Correlations of 48-h changes GFR estimates and changes of mGFR were significant (P 15% decrease in mGFR. Conclusions: In patients hospitalized for acute heart failure, serum creatinine- and cystatin C-based predictions performed poorly in detecting actual changes of GFR. These data challenge current clinical strategies to evaluate dynamics of kidney function in acute heart failure
    corecore